Smoothness of radial solutions to Monge-Ampère equations

نویسندگان

  • Cristian Rios
  • Eric T. Sawyer
چکیده

are smooth, given that k is smooth and nonnegative. When u is radial, (1) reduces to a nonlinear ODE on [0, 1) that is singular at the endpoint 0. It is thus easy to prove that u is always smooth away from the origin, even where k vanishes, but smoothness at the origin is more complicated, and determined by the order of vanishing of k there. In fact, Monn [9] proves that if k = k (x) is independent of u and Du, then a radial solution u to (1) is smooth if k 1 n is smooth, and Derridj [4] has extended

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schauder estimates for degenerate Monge–Ampère equations and smoothness of the eigenfunctions

We obtainC2,β estimates up to the boundary for solutions to degenerate Monge–Ampère equations of the type det D2u = f in , f ∼ distα(·, ∂ ) near ∂ , α > 0. As a consequence we obtain global C∞ estimates up to the boundary for the eigenfunctions of the Monge–Ampère operator (det D2u)1/n on smooth, bounded, uniformly convex domains in Rn .

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

Existence and multiplicity of positive solutions for singular‎ ‎Monge-Amp‎‎$‎rmgrave{e}‎$re system

Using the fixed point theorem in a‎ ‎cone‎, ‎the existence and multiplicity of radial convex solutions of‎ ‎singular system of Monge-Amp`{e}re equations are established‎.‎

متن کامل

Stability of Radial Symmetry for a Monge-ampère Overdetermined Problem

Recently, following a new approach, the symmetry of the solutions to overdetermined problems has been established for a class of Hessian type operators. In this paper we prove that the radial solution of the overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008